UC Boulder – New way to split hydrogen from oxygen to produce fuel

“An artist’s conception of a commercial hydrogen production plant that uses sunlight to split water in order to produce clean hydrogen fuel.” (Credit: University of Colorado Boulder) Source: FuelCellWorks.com

Fuel Cell Works has this news release announcing a new way to produce hydrogen fuel using sunlight, metal oxides and steam, developed by a team at the University of Colorado at Boulder.  The process eliminates the need to both heat and cool water in order to split it into hydrogen and oxygen.  Here’s more from the report:

A University of Colorado Boulder team has developed a radically new technique that uses the power of sunlight to efficiently split water into its components of hydrogen and oxygen, paving the way for the broad use of hydrogen as a clean, green fuel.

The CU-Boulder team has devised a solar-thermal system in which sunlight could be concentrated by a vast array of mirrors onto a single point atop a central tower up to several hundred feet tall. The tower would gather heat generated by the mirror system to roughly 2,500 degrees Fahrenheit (1,350 Celsius), then deliver it into a reactor containing chemical compounds known as metal oxides, said CU-Boulder Professor Alan Weimer, research group leader.

As a metal oxide compound heats up, it releases oxygen atoms, changing its material composition and causing the newly formed compound to seek out new oxygen atoms, said Weimer.  The team showed that the addition of steam to the system — which could be produced by boiling water in the reactor with the concentrated sunlight beamed to the tower — would cause oxygen from the water molecules to adhere to the surface of the metal oxide, freeing up hydrogen molecules for collection as hydrogen gas.

“We have designed something here that is very different from other methods and frankly something that nobody thought was possible before,” said Weimer of the chemical and biological engineering department. “Splitting water with sunlight is the Holy Grail of a sustainable hydrogen economy.”

A paper on the subject was published in the Aug. 2 issue of Science. The team included co-lead authors Weimer and Associate Professor Charles Musgrave, first author and doctoral student Christopher Muhich, postdoctoral researcher Janna Martinek, undergraduate Kayla Weston, former CU graduate student Paul Lichty, former CU postdoctoral researcher Xinhua Liang and former CU researcher Brian Evanko.

One of the key differences between the CU method and other methods developed to split water is the ability to conduct two chemical reactions at the same temperature, said Musgrave, also of the chemical and biological engineering department. While there are no working models, conventional theory holds that producing hydrogen through the metal oxide process requires heating the reactor to a high temperature to remove oxygen, then cooling it to a low temperature before injecting steam to re-oxidize the compound in order to release hydrogen gas for collection.

The research for this solar-thermal method of fuel production was funded by the National Science Foundation and the U.S. Department of Energy.  But, according to the release, it may still be years away from “commercialization”.   The following reason is given:

“With the price of natural gas so low, there is no incentive to burn clean energy,” said Weimer, also the executive director of the Colorado Center for Biorefining and Biofuels, or C2B2. “There would have to be a substantial monetary penalty for putting carbon into the atmosphere, or the price of fossil fuels would have to go way up.”

Isn’t  the price we pay for fossil fuel extraction and burning too high as it is?  Click here to read more about the UC Boulder research.

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s