“Graphene: Thin as an atom, with amazing strength and electrical properties”

"graphene miracle discovery" - Source:Belfasttelegraph.co.uk
“graphene miracle discovery” – Source:
Belfasttelegraph.co.uk

“It may be the scientific finds of the century,” reports the Belfast Telegraph.

But, the discovery of the amazing nature of graphene started out as a joke between two scientists.

From the Belfast Telegraph report:

Two Russian-émigré scientists at the University of Manchester, Andrei Geim and Kostya Novoselov, were playing about with flakes of carbon graphite in an attempt to investigate its electrical properties when they decided to see if they could make thinner flakes with the help of sticky Scotch tape.

They used the tape to peel off a layer of graphite from its block and then repeatedly peeled off further layers from the original cleaved flake until they managed to get down to flakes that were only a few atoms thick. They soon realised that by repeatedly sticking and peeling back the Scotch tape they could get down to the thinnest of all possible layers, one atom thick – a material with unique and immensely interesting properties.

When the two scientists won their joint Nobel prize in physics in 2010 for their ground-breaking experiments, the Nobel committee made a point of citing the “playfulness” that was one of the hallmarks of the way they have worked together.

Playing about with Scotch tape on a Friday afternoon sounds a jokey thing to do, but it soon turned into a deadly serious game of scientific discovery which would have been impossible if not for the well-prepared minds of Geim and Novoselov.

“A playful idea is perfect to start things but then you need a really good scientific intuition that your playful experiment will lead to something, or it will stay as a joke for ever,” Novoselov says. “Joking for a week or two is the right way to go, but you don’t want to make your whole research into a joke.”

A most interesting and diverse material like graphene carbon could usher in an “industrial revival”, but one using carbon graphene instead of carbon coal, the article reports.

The inventive step that made Geim and Novoselov into Nobel laureates was to find a way of transferring the ultra-thin flakes of graphene from Scotch tape to a silicon wafer, the material of microprocessors. Once they did this the extraordinary electrical properties of graphene could be witnessed and explored, including its “ghostly” quantum state when electrons start to behave weirdly as if these particles have no mass. “The excitement would exist even without these unusual properties because graphene is the first two-dimensional material. It seems obvious now because we can suspend it in the air and do almost anything with it, but at the beginning it was by no means obvious that it would be stable,” Novoselov says.

“And then on top of that there are other excitements such as the very unusual electronic properties that we’ve never come across before. Then there are the unusual optical properties, chemical properties and many more.

“We have a really unique opportunity here in that quite a few unusual properties are combined in one material; the strongest, the most flexible, the most stretchable, the most conductive, optically transparent and something which is a good gas barrier. So you can invent quite a few new applications that were not possible before,” he adds.

The potential uses for graphene appear almost limitless. They range from new types of flexible electronics that could be worn on clothes or folded up into a pocket, to a new generation of very small computers, hyper-efficient solar panels and super-fast mobile phones. Yet at the heart of graphene is a honeycomb structure of carbon atoms – described as “atomic chickenwire”. Carbon is the basic element of life, which means that graphene could be the focus of a new industrial revolution based on electronic components that are biodegradable and sustainable. If there was ever a building material for a new, green economy, graphene could be it. As a result, the Government has actively supported a new National Graphene Institute (NGI) in Manchester, which will be completed by 2015 at the cost of £61m, of which £38m is coming from government research councils.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s