Baer’s Geological Law and Einstein

"Lake Powell and the Rincon in Utah are featured in this image photographed by an Expedition 31 crew member on the International Space Station."  NASA
“Lake Powell and the Rincon in Utah are featured in this image photographed by an Expedition 31 crew member on the International Space Station.” NASA

Discovery News has published this report, which originally appeared in IO9 about Einstein’s study of, “An obscure geological law,” articulated by well known embryologist Karl Ernst von Baer.

The article reports that Einstein wrote a paper on Baer’s geological law:

“In 1926, he published a paper that examined Baer’s Law. Ever heard of that? You probably haven’t – for two different reasons. It doesn’t have any practical effect on the world, and Karl Ernst von Baer was such a talented researcher in some areas that, like Einstein, his other achievements overshadowed his work in geology.

Von Baer made a lifelong study of embryology, uncovering the development of everything from birds to humans. He showed that, at different stages of development, embryos from different organisms can look very similar. Basically, he kick-started the field of embryology. But he spent some time studying geology as well, and came up with a theory about the erosion of rivers. Baer’s Law is the river equivalent of the Coriolis Effect – which shows that objects moving over long distances are affected by the rotation of the Earth.”

This article includes an explanation the Coriolis Effect:

“Imagine standing on the north pole and being able to throw a ball to the equator. A target is set out for you. But you are standing, basically still, while the target is zooming by so fast that it travels the entire circumference of the Earth in a day. It’s zooming, from your perspective, to the left, so your ball seems to curve to the right. The trick of the Coriolis Effect is, when you trundle down to the equator, retrieve your ball, and throw it back up, it will still seem to zoom to the right. How can that be? As you look up towards the north pole from the equator, you are constantly in line with it. But technically you’re not. You’re being pulled to your right as a high rate of speed. The pole is sitting relatively still, like the center of a merry-go-round. The ball is being pulled, along with you, to the right at a high rate of speed, and as it goes towards the north pole, the ground slows down under it, making it seem to pull to the right, again. In the southern hemisphere, the same thing happens but in reverse. Flying objects are pulled to the left.”

And here’s more about the Baer Law as relates to Einstein’s paper about the law’s effects from this article:

“Baer—and Einstein—reasoned that this didn’t just happen with things like air and thrown balls. It happened in the water, too. Rivers experienced this pull, or at least the water in rivers did. Plant your feet to either side of a river in the northern hemisphere, and look downstream, and the water will wash against the right bank more. In the southern hemisphere, it will wash against the left bank. This wear and tear will erode away the sediment on the banks, so in the southern hemisphere the left bank will get more wear, and in the northern hemisphere the right bank will. This was Baer’s Law, but people didn’t understand the mechanics of it.

Einstein’s paper argued that, as water rushed toward a river bank and was pushed away, it experiences an inward push to match the outward push of the water. This establishes a pressure gradient along the banks of the river. Along the bottom of rivers, the water experiences friction, which slows it down and lessens the outward push. The pressure gradient then sweeps the sediment from the sides to the bottom of the river. This, Einstein thought, was the mechanism that ate away at the side of the river, and built up the bottom.”

Read the full story here.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s